
SQL INJECTIONS
Kevin Hagner

jsaipakoimetr@spyzone.fr

May 28, 2013

SQL is a very powerful language that allows webmasters to create almost every query that they
can imagine. But this power can also be used against them. Mostly, webmasters aren’t aware of all
risks that they take just by putting some dynamic SQL queries in a script that uses some variables
that can be modified by users.

We will present here some of the most common SQL attacks that occur on poor quality website.
We will use MySQL that runs through PHP, but because SQL is a standard, all this feature works
also with other database management system, and of course, with scripts that are with something
else than PHP.

KINDS OF INJECTIONS

FAKE AUTHENTICATION

It’s the easiest to do, but also the less dangerous. They
are used usually for bypassing an authentication sys-
tem by short-circuiting some verification conditions.
For example, we can use this SQL query in a PHP script
that can be used for checking if one admin correctly
identify himself on a website:

SELECT * FROM admins WHERE l og in=
’ $ log in ’ AND password= ’ $password ’

We just have to test the length of the result for
knowing if someone was correctly authenticated: if the
result is null, the $login and $password variables are
not a good couple. But if the result is one, it means
that one row in the database was found in the condi-
tion, so that the user is correctly authenticate.

It’s a good way if the user use normal value, like
$login = Georges and $password = IAmGod. But what
happens if the user puts, for example ’OR 1=1# in the
$password variable? The SQL query that will be exe-
cuted will be:

SELECT * FROM admins WHERE l og in=
’ Georges ’ AND password= ’ ’ OR 1=1# ’

Here, Georges will be authenticated if his password
is empty, or if 1=1. Of course, 1 always equals 1. So
now, you actually only need an administrator login for
being able to connect with his account, that is usually
extremely simple to get.

If you are wondering why we put a sharp at the end
of the entry, it’s for putting into a comment the end of
the hard coded sql query in the script. In this case, it’s
for ignoring the original quote that is supposed to be
use for closing the password parameter.

CATCHING DATA

We previously saw how easy it was to authenticate our-
self with all existing accounts. But how are we sup-

posed to work if we want to catch data, instead of
creating a session on the website? Let’s imagine that
a website uses this query for displaying informations
about one member:

SELECT f irstName , lastName FROM members
WHERE i d s e r v i c e= ’ $ i d s e r v i c e ’

We just need to guess that the two fields returned
by the query are named firsName and lastName for dis-
playing what we want. We can put content in $idservice
for creating a query like this one:

SELECT f irstName , lastName FROM members
WHERE i d s e r v i c e=−1 AND 1=1
UNION SELECT l og in AS f irstName ,
password AS lastName
FROM admins WHERE 1=1# ’

DOUBLE QUERIES

We can’t use this technique with PHP or Java, but with
other languages that are more free with the user like
ASP, you are allowed to build more than one SQL query
in one single SQL connection. This can result to huge
weaknesses because the user won’t have any restriction
by the SQL language.

Here are some queries that will works if the website
is coded in ASP.NET and that the $idservice variable is
not secured:

SELECT f irstName , lastName FROM members
WHERE i d s e r v i c e =1; ALTER news
SET content= ’ Database hacked ! ’

SELECT f irstName , lastName FROM members
WHERE i d s e r v i c e =1; DELETE
FROM members WHERE 1=1

SQL INJECTIONS – KEVIN HAGNER 1/3



FILE MANIPULATION

Did you know that MySQL and other DBMS 1 are
even able to manage files? The user connected to the
database just needs the FILE privilege for accessing all
files that the DBMS are allowed to read and write by
the operating system in which it is running. 2 Hope-
fully, this permission is usually set off by default. But
some frameworks need the permission, so keep this
weakness in mind.

SELECT fName , lName FROM members
WHERE i d s e r v i c e=1 UNION SELECT
LOAD FILE ( ’ / e t c /passwd ’ ) AS fName

SELECT f irstName , lastName FROM members
WHERE i d s e r v i c e=1 UNION SELECT
’<a php s c r i p t > ’ INTO OUTFILE
’ / var /www/ websi te / f o o t e r . php ’

By the way, it’s also not a great idea to just use the:

GRANT ALL ON database name . *
TO user name ;

statement for granting privileges to one user that will
manage the database because we are too lazy for
just writing the privileges that the user will effectively
need.

ATTACKS CONDITIONS

In this part, we will see in which context the SQL
query is executed. Indeed the difficulty of the injection
doesn’t depend of this. It’s the fact that we can check
the result that depends on this element.

SEEING INJECTION

The easiest one is when the query that we hack is used
for displaying an undefined number of entries on the
screen, like when you want to display all members of
one team.

Usually, you do a query that will fetch all data in
the database, and afterwards you do a loop that will
display all element until the last one.

So you just can create a double query, with UNION
SELECT for example, for displaying at the end of the
expected content, the one that we want to see (the
section catching data explains this).

PARTIALLY BLIND INJECTION

Partially blind injections are when the algorithm won’t
directly print the result of a SQL query to the user. Ac-
tually, the only thing that we can show with this query
is usually if the query was correctly executed or not: if
the displaying content is good, it means that the query
was right. If errors appears that mean that something
wrong occurred.

Partially blind injections are the ones that we use
when we try to do something with authentication form
(because the only information that we usually get are
if the login was good, wrong, or a execution error).

But it’s not because we can’t directly displaying a
content to the screen that the break is less exploitable.
Look at this query:

SELECT t i t l e , content FROM a r t i c l e s
WHERE id = −1
UNION SELECT ’ t e s t ’ , ’ i n j e c t i o n ’

FROM user s WHERE
l og in= ’ kevin ’ AND
substr ( password , 1 , 1) = ’ e ’ ;

What we do in a first time is to invalidate the con-
tent that should be fetch by inserting a wrong article
id. We can so use our unique entry in the second state-
ment, introduced thanks to the UNION SELECT.

We will now create our second query that will re-
turn test and injection if the condition is true, so if the
first letter of Kevin’s password is a e. We just have to
look if the webpage will display an article with the test
title and injection as the body or a blank one for know-
ing if the query was true or not.

It seems quite boring to try to guess a password by
this way, but keep in mind that a small program that
will crack it automatically can easily be done.

BLIND INJECTION

Blind injections occurs when nothing is displayed at
the screen. The aim in this case can be to transform
the query in a partially blind injection, like the one
that we show previously. A common technique is to
use the blind timing injection attack that play with the
time that take the server for executing the query. Let’s
look at this example:

SELECT id FROM table WHERE param = −1
UNION SELECT IF (

substr ( password , 1 , 1) = ’ e ’ , 1 ,
benchmark(200000 , md5( ’ word ’ ) ) )

FROM user s WHERE l og in= ’ kevin ’ ;

If the condition is true, the query will simply return
1. But if it’s false, the query will compute 200 000
the md5 hash of word, so it will take much more time.
So now, we are able to deduce if a query is good or
wrong just by checking how long take the query for
begin done.

1DBMS is the abbreviation for: DataBase Management System.
2It seems that the LOAD FILE function used by MySQL is not working very well on Linux. Be careful if you experiment some troubles by

using it. – http://bugs.mysql.com/bug.php?id=38403

SQL INJECTIONS – KEVIN HAGNER 2/3



(FALSE) DEFENSE SOLUTIONS

ESCAPING QUOTES

Probably the most dangerous solution, because it give
to the webmaster the false feeling to have a secure al-
gorithm. Indeed, we don’t need any quotes for execut-
ing injections queries in a variable that will be inter-
preted by SQL like a number. We can use the example
of a script that will display an article in function of one
id:

SELECT t i t l e , content FROM news
WHERE id=$ i d A r t i c l e ;

We just have to insert in $idArticle content for crafting
this query:

SELECT t i t l e , content FROM news
WHERE id=1 AND 1=0 UNION SELECT
1 ,2 FROM user WHERE l og in=

char (107 ,101 ,118 ,105 ,110)
AND substr ( password , 1 , 1) =

char (101);

for doing exactly the same thing that the query pre-
sented in the Partially blind injection part, without a
single quote.

If your variable has to be interpreted like a string
(so with quotes around it in the SQL query, the escap-
ing quotes method can be quite ok. But keep in mind
that weakness can occurred because of charsets inter-
ferences. If GBK (Chinese encoding) is used, it’s possi-
ble in some conditions to bypass the addslashes() func-
tion, or other that has the same works: escaping quotes
and double-quotes.3 Setting your DBMS and your web
site to use UTF-8 or any ISO-x charsets should fix the
weakness.

TRANSLATING STRING

The second solution, and little bit more secure, is
to translate the data that is inserted by the client in
an other language that is not interpreted by the SQL
server as special characters. It’s what does, for exam-
ple, the htmlentities()4 PHP function.

If you try to put a double quote in a string trans-
lated by htmlentites, you will obtain in return: &quot;,
a characters suite that is not interpreted by the server.

The good point of translation is that usually, your
browser is smart enough for recognizing this HTML
codes. So the user can still continue to use this charac-
ters in a normal context (yes, quotes can also be used
for writing text, not only SQL injections ,) and they
will continue to be well displayed.

Finally, keep in mind that translation only protect
your strings! The previous query use in the Escaping
quotes section will works exactly as good with the htm-
lentities protection that without.

TESTING DATA BEFORE USING IT

All user input is evil, until proven otherwise. — So test
data before using it is a quite efficient way for avoid-
ing injections: testing if the variable is a correct integer
before using it for displaying an article with an id, etc.

It’s one of the best solution that we can use for pro-
tecting variable that represents a number (so without
any quotes).

USE ENUMERATIONS

If you use variables for choosing one entry between a
known list, you can create an enumeration that will
force the user to choose a valid value. For example,
you can use an enumeration that can take the value:
reader, author, admin for defining the grade of an user
instead of an integer that can theoretically have infi-
nite values. So when a script has to deals with one
value that should uses this kind of variables, we just
need to test if the content of the given one is included
in the enumeration or not.

PROACTIVE PROTECTION

Some securities extensions like mod security for Apache
can be added to the web server for trying to block in-
jections before they happens. Unfortunately, because
protections like that works mostly on regular expres-
sions or specific attacks patterns, it’s almost impossible
to block everything.

It’s a nice method for being keeping in touch when
an attack occurs on your server because you will prob-
ably have some warnings, but it’s not a good idea to
completely trust this system.

REFERENCES

[1] Hakipedia. http://hakipedia.com/.

[2] Under your hat. http://underurhat.com/.

[3] Friz N. Bases hacking. http://bases-hacking.org/.

3More informations about the GKB weakness in this Hakipedia article. – http://hakipedia.com/index.php/SQL_Injection#Filter_

Bypassing
4Be careful with PDO that is also wrongly consider as a very secure protection method. – http://stackoverflow.com/questions/

134099/are-pdo-prepared-statements-sufficient-to-prevent-sql-injection

SQL INJECTIONS – KEVIN HAGNER 3/3


